A few small updates on the state of various projects..

NTP Server: Version 1.5 board looks mostly final now. The 3.3V switchmode regulator design has been checked on a breadboard and seems to run 1.4 just fine, so we'll be going with that on the 1.5 board. This will reduce the heat significantly, as the reverse-polarity diode (which itself loses about half a watt) is being replaced with a P-channel MOSFET and the switchmode supply loses far less heat compared to the linear regulators (almost 1.6W are sourced from them alone). Software side I've removed all the (hugely problematic) single precision floating point code and use the time reported in integer milliseconds instead. Much nicer!

AVR Programmer: First build has been completed, and it largely works with the LUFA code compiled and uploaded into it. Various issues have come up, such as the bootloader switch not working quite as expected (The bootloader will only enter DFU mode if the switch is closed and we're coming out of external reset which isn't just a power-on-reset. Ick.) External flashing of the MCU doesn't work right (unsure why) and it seems to hold !RESET low on targets. There is a 1.1 which is in progress.

New Breadboard PSU: Following on from the tests on the new switchmode supply for the NTP server, I've sketched out a new breadboard PSU which uses the same design. This would be an alternative to the linear one I already make and sell. At the moment it's a single output design, I'm thinking about ways to make it dual-output or at least easily switchable between 5V and 3.3V.

XMEGA Arduino: Most of this design is completed. I need to just do a build to see how it plays out. The new XMEGA C3 line looked interesting but imposes some annoying routing problems. While using the C3 would provide a USB XMEGA which isn't encumbered by crypto modules (and, therefore, export regs) and the C3 has USB pins where they are on the AxU chips, it has the same selection of peripherals as the D3 and USB is camped on top of one of the SPI ports. Which makes routing hard. May stick to the D3+MEGA16U2 bridge approach for now.